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SUMMARY

It 1s of interest for several reasons, from both the mathe—
matical and physicsl points of view, to discuss in detail what
happens to the various categories of transport equations derived
from different applications of invariant imbedding as the velo—
city of the neutron is allowed to become arbitrarily large with
a corresponding increase in the probability of a collision.

This idea 18 a quite natural one and one that has been pur-—
sued by a number of different investigators with different aims
in mind. Diffusion theory classically has been regarded as an
approximation to the more rigorous (but, of course, not completely
rigorous) transport theory under the assumption of high velocity
and small mean free path. PFurthermore, passage to the limit in
the "telegrapher's equation,”" a linear partial differential
equation of hyperbolic type, has been cagried out. We shall
discuss one aspect of this below.

Our principal aim here is to study the limits of the non—
linear functional equations obtained from the transport processes
with finite velocity as the velocity increases without bound.

In this way, we odbtain corresponding results for heat or 4iffu-
sion processes, where the physical picture is not as clear.
Having obtained the equations in this indirect and complex
fashlon, we can then interpret them in such a way as to be able
to derive them directly by invariant imbedding techniques. 1In
all cases, the equations are of the generalized Riccati type
which we recognize as characteristic of these processes of

mathematical physice.
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INVARIANT IMBEDDING AND NEUTRON TRANSPORT THEORY—V:
DIFFUSION AS A LIMITING CASE

Richard Bellman

Robert Kalaba
G. Milton Wing

l. Introduction

In previous papers in this series, we havec investigated a
variety of simple models of transport theory by means of the
functional equation technique of invariant imbedding. A number
of references, together with some discussion of more complex
versions will be found in [1].

Neutrons are mathematically abstracted to be point
particles with finite velocities. Pission and scattering are
characterized by certain probabilities of branching and
reversal or reorientation of direction ("collision cross—
sections") in the medium within which the process is occurring.
In the great proportion of cases we assume no neutron-neutron
interaction, although we have discussed this phenomenon in
one piper, [8].

It 18 of interest for several reasons, from both the
mathematical and physical points of view, to discuss in detaill
what happens to the various categories of transport equations
derived from different applications of invariant imbedding as
the velocity of the neutron is allowed to become arbitrarily
large with a corresponding increase in the probability of a
collision.

This idea is a quite natural one and one that has been
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pursued by a number of different investigators with different
aims in mind. Diffusion theory classically has been regarded
as an approximation to the more rigorous (but, of course, not
completely rigorous) transport theory under the assumption of
high velocity and small mean free path, [2]. Furthermore,

' a linear

passage to the limit in the “telegrapher's equation,'
partial differential equation of hyperbolic type, has been
carrled out. We shall discuss one aspect of this below.

From another direction, the discrete random walk process
yields the diffusion equation in the 1limit. This observation
has been made the basis for a considerable amount of analytic
and computaticnal effort, centering about the theme of "Monte
Carlo" techniques.

Cur principal aim here 1s to study the limits of the non-
linear functional equations obtained from the transport
processes with finite velocity as the velocity increases with-
out bound. 1In this way, we obtain corresponding results for
heat or diffusion processes, where the physical picture 1s not
as clear. Having cbtalned the equations 1in this indirect and
complex fashion, we can then interpret them in such a way as
tc be able to derive them directly by invariant imbedding
techniques. 1In all cases, the equations are of the generall:zed
Riccati type which we recognize as characteristic of these
processes of mathematical physics.

At the present time, we are studying the question of
treating Stefan-type diffusion problems by a similar passage

to the 1limit in the equations derived from transport processes



P-1835
11-9-59
3
with variable boundaries. This 1s, as might be expected, a
complex problem. Some initial results are given in [9].

Throughout the paper, we use a simple generalization of
the 1dealized one—dimensional rod process treated in [6]. In
the following section, we shall obtain some new equations for
the flux within the rod, assuming finite velocities initlally.
In §), we derive Pick's law for this simple process. This is
important for our purposes, since 1t is the analysis of this
result which suggests the combinations of functions which
should be used in the limiting case. In §4, we study the
limiting form of the internal flux as the velocity becomes
infinite, and in §5 the diffusion process giving rise to the
function obtained in this way is analyzed.

We then turn to the primary objective of this paper, the
passage to the limit of the nonlinear integro-differential
equation obtained for the reflected flux in the neutron trans-
port case by means of the technique of invariant imbedding.

In the concluding section, we show how to obtain the result by
direct application of the imdbedding technique to the diffusion
process.,

Throughout this paper, our methods are largely formal,
since we are principally interested in demonstrating the
applicability of invariance principles. The existence of
relevant limits and the applicability of Laplace transform
methods are taken for granted in order to arrive quickly at
the desired equations. In the near future these questions will

be studied in a rigorous fashion.

~ ¥See also [3,4,5].
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For the simple mathnematical modzls considered nerc, there
is littie difficulty in carryinz out this program. JSince,
however, we know that the passage to the 1limit involves a
reduction from a hyperbolic partiai differential equation to a
parabolic partial differential equation, involving inter alia
a redundancy in the initial conditions,vwe can expaect some
difficulties in the general case. The correspcnding study for
ordinary differential eguations when a limiting value of a
parameter r2sults in a drastic change 1n the order of the
aquation 1s of scme subtlety. Particularly interesting
:xamples of equations of this nature occur in various nydrv—
dynamical investigations where viscosity plays the role of th»

parameter wnich approaches zero; cf. Wasow, [10].

2. The Transport £gquation

To begin our work it 1s necessary to write down some
transport equations irn fairly general form. While some of thea
are not to be found in the 1literaturc¢, they may be readily
derived by the methods of previous papers.

Consider a rod of material which transports neutrons, and
let the neutrons have constant velocity ¢ (monoenergetic
case). The usual collision processes take place with the
probability of a coillision in a length A of the rod taken
to be‘ ol + o(\) where o 1s a constant. On the average,
2k neutrons emergé from a collision inside the rod, k going
to the left and k going tc the right. We take the rod to

extend from O to x (see Figure 1), and designate the
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etc. 1t 1s easy to see that the integrated quantities satisfy
equations identical to (2.2' with the lower case letters being
replaced by caplitals.

Consider now the case in whicn the scurce cconsists of a
single "trigger" neutron at t = 0. Thus, formally, q(t) = S(t),
where 5 1s the Dirac delta function. We focus attention on
the particiles reflécted from the rod at x, writinz w(x,t

for the number emerzent per secound, and W(x,t for the total

number emerzent up to time t. Clearly,

W
3
—
»

~-
-

(2.4 u(x,t)

U(x,t

]
3
[
.

However, it 1s well tc regard the x 1in the arguments cf w
and W as referring tc ine lengtn of the rcd rather than teo
the coordinates of the end point of the rod. With thils rather

subtle distincticn in xind one then finds, using the methods

r{
of |o),
-~ ;h 2 ;w - - I8} 1 )’g 4 { \
(2. — + = = 9K + 20(k — L /W + I« w(x,z W(x,t - z)dc
- *x c ;—t: \ / ’ / \ ’ / ’
7 0
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Notice that tnis chiracterizes the reflected f.ux in a fasnicn

P

“

1ndgkendent o

the internal fluxes.

For the corresponding case 1n which there 1s za source
q{t), we write PF(x,t! for the reflected flux. Since the
% rundamental physical process 1s additive, as a consequence of
our tacit sssumpticr that there are no interactions betweer
neutrons passing in opposite directions, we can write

(2.0) Fix,t) -0/7' iz W{x,t - z)dz.
v

To find an zquation satisfiea by F, we utilize the

Laplace transform, writing
xX -8t
(2.7 F, (x.s :,’7 @ F(x,t dt,
-
with a consistently similar notation for transfcrms of cther
functions. Then, from (2.5,
(2 ! + 2 sw = % 4 20(k — 1)W, + CksW,°
. ax c L < - L L’
w.(G,s = 0.

From (2.6},
(2.9 ' o= Q. W,
(& FL, * 9%

Hernce ,

dpv s

\ ‘ e dk . ;
(2.10 =~ + S sF, = == g, + 28(k — 1 )F, + SksF W
' Jx ¢ L s L ( L L'y’
which leads back tc
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(2.11) 3= + S5 - oka(t) + 20(k = 1)F(x,t) ;

This clearly reduces to (2.5) when q(t) = d(t).

de shall derive one other speclal case ot (z.11), corres-
ponding to the case when (%) = 1.. #h'le conceptually this
18 a bit harder to consider than the single trigger neutron
case, it has the mathematlcal advantage of avolding the
£-function. For this type of source we write the integrated

fiux as R(x,t) and (2.11) becomes

2 Bl | ©
(2.12) —f—; = j—; = okt + 2o0(k - 1)R(x,t)

t B
- ok0f7 w(x,z)R(x,t — z)dz.

But, trrom (2.6¢),

(2.12)  Rix,t) = 7" d(x,t - z)az.

Then we easily 1ind

(2.1%) 52+ 257 okt + 20(k ~ 1)R(x,t)
+ m</ﬂt r(x,z)r(x,t — z)dz,
&
R(O,t) = R{x,0) =0, pix,t) = ﬁ’—E(x,t).

O
ct
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3. PFick's Law

If we subtract the second equation c¢f (2.2) from tne first

we obtaln
L3 w-{u + v) + e ) - 8{u -~ v)
P 2y & o) ¥y

For large ¢ cne expects the secund term o¢n the lef't to be

small. Hence we formally obtain the relation

(5:2 §§(u + V) == 6{u~-=v)

in the "limit of large velscity." EBquation (2.2) iz ordinarily
referred to as Pick's Law, [2]. wnich states thai tne net flux is

proporticnal to the Zradient of the concentration ana 1ir the

~Pr 1. ¥ T
JproBiLz direction.

. The Liriting Case 2btalined f{rom

— e et — o — - ———— i — et .

- -

.

-~
[ -

To obtain przliminary results we take Laplace translcrme

of (2.2). Thus, using the notation intrcduced 1in (2./),

duL S .
(4.1 - aer o ok — 1)u., - okv, , .
iv, & : y
G e = v, = oku, 4 ol — 1)v,,
ul(?,s§ = 0, KL(X,b) q:(S}.

After rather extensive but rudimentary calculaticons we get

«cq. (8} sinh Ay

(4.2) u, {y,8) = ; -
L (N cosi Ax -+ (£ - (1 - kjo)simh 7\:}'

1. (sJA cosh Py + (E - (1 - ¥)e)sinh ﬂy}
V. kFB) = el £ P
- (R cosh Ax - (2 + (1 - x)o)stnn ﬂx}
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LO”
wlth
-\ & Sy SRL - K}O " ‘ 5
(u.j; % 3 (-C. - ’-L-;‘——‘— o e 0 (* = "'{' /‘ »
we now choose Kk = 1,2, which means physicaliy that an

average collision gives rise to one neutron. Th's cholce

eliminates the 1as® tern i (4.;:. Stnce we 3-ek a3 diffusion

type equation, we let ¢ - w, 1.2., the velocity become infinlte.

Clearly to preserve the process we must then regulivre tnat J —s

in such a way tnat lim c¢c/¢ = D, a constant, Hence, lim A= V§75.
(It should ve noted that a somewhat more general result

could have been obtained by requiring, insceadl of Kk = 1/2,

that 1iim 02(1 — 2¢) = @a. By so doing we could have

accounted for cases of avscrpticn cr ricsion. To do this here

would merely comp.lcate the ensuing calcuiations,)

Bearing (-.2° in mind, we set

(8.4) - 3. (y,8) = olu (y,s) - v (y,8)),
JQ 1()95' iim Jz(yl. *
0, L L

Let us consistently reserve the subscript zerc to refer te quan-—
titiea in the limit 48 <& — @ .

we then discover that

(4.5) 3o (y,8) = = 1im i »
0al o—»0 / cosh Ax + (% . g)sluh 2x.

| g Gy

o oa §8) YU *s cosh (y/C's)

’ cinh (xdD 's)
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5. A Classical Diffusion Problem

.2 now seex an ordinary dl "fuslon problem which glves rise
to the 1im‘ting expression found in (4.5). It 1s reauily veri-

vted that 1r eo(y,t) 1s implicitly determined by the relations

-~

. % . ¥%® 38 ; . ; 3 : 7
‘.5-*) Y }“"3 = 3:’ Q(D,t) = 0, H(X,L} e ¢Q(L)o G(Y:‘-) = 0,
y 2

then, explicitly,

2¢.(s)stnh(y¥D1s)
(5.2) G (y,s) = —= .

sinh (xJD“ls}

ana
de. /;—1
. 2y A Wl cosh(y/h “s)
{5.3) v 2q,(s¥D s :

*s)

einn(xJD *s

Ne may summar'ze our results thus rar as follows:

If we consider the transport problem formulated in (2.2)

—

in the iimiting case where ¢ - ®, c¢/0—-—» D, with k = 1/2,

then the probiem is formally equivalent to the classical dif-

fusion problem (5.1). The guantity l'm (u(y,t) + v(y,t))
3300

may be identifled with o(y,t), while 1im o(u(y,t) — v(y,t))
0—>00

corresponds to - )373y.

It 1s possible to fdentify 6&(y,t! with the total neutron
flux (see [2 ]} although the dirfusion may reter as well to
heat or material concentration., The fact that a source cf
2a(t) 1s requirea in the problem (5.i, may te rather puzziing

' \

until one notes rrom (4.2} that, ‘ormally, noth u(x,t) and

v{x,ct) approach af{t) as ¢ = oo,



Ce The Reflected Flux

iet us now turn tc Equation (2.14) ana try to carry cu
the same type .f pascage ¢ the llmit. It Is clear that we

must begin by investigating the quantivy

) Hix,t) = GIR{X,E) -~ QL% )L,

since q(t) = 1. Thus

b
e
-
(e
= g
s
®
(¥
e
«
@
1]
(ad
O
o
21\
>
ct
|
(o d

(6.2) (x,t) EL:;.__‘ ' t,

rix,t} - 3 ﬁ : }
Substituting these in (2..4) w ; g o owe - TEnag
16:3) .. o4 1 38 $ - a5

7 a o
#rom this we rendlly get
( - %ﬁ %E(% o %Cﬂ?t “(F,th(x.: - 2)dz,
H(x,0) = 0, H(O,t) = - ot.

vassing to the limit =8 In ?b we get at le3st “ormally)
H, ¢ '

" = L& . - '\_. x - R 3,

545 = 20 %0? h(x,2)h (x,v - z)dz,

§ D

B el

-

1l
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where H.(x,t) - iim H(x,t), etc., 2s agreed. That (6.5) is
o=

the correct lim‘ting form may be established by a Laplace

trans "o oapcunent similar to Lhat of the last section. We

mit the detallse

It 's or some Irteresi to evaluate H,. This may be done

by solving (£.5), of course, However, it is easier for us to

~
note reem (4.5) that

f =1 /—’
\ WwD s cosh (xJ/D *s)

(‘ ,T_;; ¢ ) (\(,‘._ = - 20 (;~ _}1.":..*

)y i 7 —
=tnh (xvD 18)
~ &~ coth (er—‘s),
vabD
stnce g(t) = 1. We find 2 >
x“n- \
¥ e -
(r ."'\ n (x'* AL SR 2 2 e ty }
Jrth n~1 /
P o
= ('7,1'"‘?"'
s = DX
WY e is a theta funcilon.

The analogue o0 (7.5) may be derived easily for the case

in which there s an arb'trary source 2(t)}. The result !s

>J
S S B 55 ( Rt | . \ 1 t.
(<.8) EEL + 2D *q(t) = 5(40 hc(x,;)JC(x,t - z)dz,

')
o
1]
w
72
=
-
13%]
.
A

where
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4e now read? !y see the followling recult

17 we consider the iransport proclenm ormulated in (2.2)

& | + I -3 g - . 1 S yeme
\n the l'miting case then the cuantity J.(x,! is formally

3 .
egulvalent to the gquantiuy —'f% { Q(y.:)dzf shere o

is delined oy (5.1). Further J, satisfies (2.%) with

Lj(x,?} zi sen by (6.5).

-r

[ A Direct Invarlant Imbedding Approvacn in Diftusion Theory

The equat'!ons thus far obtained are Lol new, though our

apnroach to them may be somewnat novei. To conziude our work
' o b S TR

ning (5.8) by Lnvariant

here we snall present a nethod »~t ohta

i mbedding *techniquesz without verturing outslde the confines of

oyrcdinary ditasion 1202y . The metviicd deseribed holds promlse
of beling a tieabis i much nore ol icated 41 Cfasion pro-

cesses than that deseriled here, and, in particular, may
eventually yleld new iormulations cf Stelan-type problems,
To pe consistent in cur viewpoint, «#e now think or g(y,t)
ag the density o, neutrons at y at time t. Thenrn the net
neutron current densiy c(y,c) 12 provided by Flek's law, 1n

the ordinary diffusion approach [ 2 ],

(7.1) ely,t) = - D & gly,5).

The conservation cf partizies (&'nce thare !s nc intarnal

preduction! requires ‘n any interval (a,b) of the rod

—
-
-
n

N

* /.: / . .
(‘(',‘, J) _— C(a’t) 'a'—sa-c(”)) ’o(}’”}dJ'
a



¢ 3 wrlte, v the net current emerglng from our rod
f ength x, k{x,t). Here, again, while it is true that
;.(x, : - a{x,t) we choose to regard the Xx in the function
p a3 referring to the length of the rod. Thus k(x + &,t)

rrent emergent from = rod of length x + 3,

= o L S - ’ Rt i Ay el o~ "
source 234 24 \X = A, other inltial and toundary
wonditions velng as bet'ors
s y \ = : -. ' \
e Now Ly 1o expregs K{X + 4,t) 1interms oOf a(m,ﬁ .

Arpiying (7.2) to the rod of jength Xx + 2 we find

e now seek expressions for Clx,t) and ¢, To find
"(x,t) we rute that we have thus far disregarded the part of
the rod fron » 1o xX. By the continuity conditions imposed
y 4 ‘fusion theory, we know that 0C(x,t) 1is nerely the
current out u x die tc the scurce g(x,t) imposed. Let us
vppose that a steady source J: wunlt strength produces a
current out of the rod o p(x,t). Then a source g(x,t)

wlli produce an integrated current

{ .5) it} ‘Lﬁh plx,t — z)g(x,2)dz.

r
{Thia ts Just Duhamel's Principle | 7 ];.

.
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As y=t we have not used (7.1). From !t we {ind
(7.5) #x,t) = 5 k(x + a,t) + 2a(t) + o(a).
Supstituting (7.5) and (7.¢) in (7.4), we odbtain
LT.7) {x + a,t) = S n(x,t — r){%k(x + 8,2) + 21(z)zdz
“% v J

- 2aq(t) + o(a).

But, by [nhamei's Frinciple,

(, 8) ‘/0& '(X,' e (—‘d ‘(xlt .
Thus
g QX . \ 1 pt \
(7.9) S 2a(t) by plx,t — 2)kix,z)dz.
2 1((. ¥

This agrees sith (0.2, upon identilying k with Dy and

L

p with = h., the ractor 1/2 occurring because p 1s the

current due tc a unit source, while h. !s obtained from a
3ource of strengtnh 2.

It is clear that

To find K(0O,t) we note from (7.¢) that
A ~ A ” . ~
e(d,t) = 0 = < 5 k(~ot) " CQ(C) v O(A):

so that for (t) > O,



"learly,

PR
Ax

“(x,

in

| A4

case

3,/ o(x,t — z)p(x,2)dz,

0

94

= 1,

we have

3
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